36 research outputs found

    Gr\"obner Bases for Linearized Polynomials

    Full text link
    In this work we develop the theory of Gr\"obner bases for modules over the ring of univariate linearized polynomials with coefficients from a finite field

    Iterative List-Decoding of Gabidulin Codes via Gr\"obner Based Interpolation

    Full text link
    We show how Gabidulin codes can be list decoded by using an iterative parametrization approach. For a given received word, our decoding algorithm processes its entries one by one, constructing four polynomials at each step. This then yields a parametrization of interpolating solutions for the data so far. From the final result a list of all codewords that are closest to the received word with respect to the rank metric is obtained.Comment: Submitted to IEEE Information Theory Workshop 2014 in Hobart, Australi

    List-Decoding Gabidulin Codes via Interpolation and the Euclidean Algorithm

    Full text link
    We show how Gabidulin codes can be list decoded by using a parametrization approach. For this we consider a certain module in the ring of linearized polynomials and find a minimal basis for this module using the Euclidean algorithm with respect to composition of polynomials. For a given received word, our decoding algorithm computes a list of all codewords that are closest to the received word with respect to the rank metric.Comment: Submitted to ISITA 2014, IEICE copyright upon acceptanc

    Reed-Solomon list decoding from a system-theoretic perspective

    Get PDF
    In this paper, the Sudan-Guruswami approach to list decoding of Reed-Solomon (RS) codes is cast in a system-theoretic framework. With the data, a set of trajectories or time series is associated which is then modeled as a so-called behavior. In this way, a connection is made with the behavioral approach to system theory. It is shown how a polynomial representation of the modeling behavior gives rise to the bivariate interpolating polynomials of the Sudan-Guruswami approach. The concept of "weighted row reduced" is introduced and used to achieve minimality. Two decoding methods are derived and a parametrization of all bivariate interpolating polynomials is given

    Row reduced representations of behaviors over finite rings

    Get PDF
    Row reduced representations of behaviors over fields posses a number of useful properties. Perhaps the most important feature is the predictable degree property. This property allows a finite parametrization of the module generated by the rows of the row reduced matrix with prior computable bounds. In this paper we study row-reducedness of representations of behaviors over rings of the form Zpr\mathbb{Z}_{p^r}, where pp is a prime number. Using a restricted calculus within Zpr\mathbb{Z}_{p^r} we derive a meaningful and computable notion of row-reducedness

    A Multi-Observer Based Estimation Framework for Nonlinear Systems under Sensor Attacks

    Full text link
    We address the problem of state estimation and attack isolation for general discrete-time nonlinear systems when sensors are corrupted by (potentially unbounded) attack signals. For a large class of nonlinear plants and observers, we provide a general estimation scheme, built around the idea of sensor redundancy and multi-observer, capable of reconstructing the system state in spite of sensor attacks and noise. This scheme has been proposed by others for linear systems/observers and here we propose a unifying framework for a much larger class of nonlinear systems/observers. Using the proposed estimator, we provide an isolation algorithm to pinpoint attacks on sensors during sliding time windows. Simulation results are presented to illustrate the performance of our tools.Comment: arXiv admin note: text overlap with arXiv:1806.0648
    corecore